M1. (a) 2.75

> allow 1 mark for correct substitution, ie $\frac{11}{4}$ $\frac{23-12}{4}$ or provided no subsequent step shown
$\mathrm{m} / \mathrm{s}^{2}$
(b) driving force increases
frictional force increases
accept air resistance / drag for frictional force
driving force > frictional force

M2. (a) 3
gains 1 mark
$\mathrm{m} / \mathrm{s}^{2}$
gains 1 mark
else working gains 1 mark
(b) 2850 ecf
gains 1 mark

N
gains 1 mark
else working
gains 1 mark
(c) friction/air resistance increases with speed;
till frictional = max forward force;
then force/acceleration is zero
for 1 mark each
alternative limitation for safety
gains 1 mark only

M3. (a) air(resistance) has greatest effect on paper
(b) paper or both fall faster
(both) fall together
accept same speed or rate

M4. (a) (i) accelerating accept getting faster accept speed / velocity increasing
(ii) acceleration increases accept velocity / speed increases more rapidly do not accept velocity / speed increases
accept $a=\frac{v-u}{t}$ or $a=\frac{V_{1}-V_{2}}{t}$
do not accept velocity for change in velocity
do not accept change in speed
do not accept $a=\frac{V}{t}$
(ii) 15
allow 1 mark for an answer of 900 or for correct use of 540 seconds
(iii) velocity includes direction
accept velocity is a vector (quantity) accept converse answer

M5. (a) It will have a constant speed.
(b) distance travelled $=$ speed \times time
(c) $\mathrm{a}=18-9$

6

$$
a=1.5
$$

allow 1.5 with no working shown for 2 marks
(d) resultant force $=$ mass \times acceleration
(e) $\mathrm{F}=(1120+80) \times 1.5$

$$
\mathrm{F}=1800(\mathrm{~N})
$$

allow 1800 with no working shown for 2 marks
accept their 10.3×1200 correctly calculated for 2 marks
(f) $18^{2}-9^{2}=2 \times 1.5 \times \mathrm{s}$

$$
\mathrm{s}=18^{2}-9^{2} / 2 \times 1.5
$$

$$
\mathrm{s}=81(\mathrm{~m})
$$

allow 81 (m) with no working shown for 3 marks accept answer using their 10.3 (if not 1.5) correctly calculated for 3 marks

(g) Level 2 (3-4 marks):

A detailed and coherent explanation is provided. The response makes logical links between clearly identified, relevant points that include references to the numerical factor.

Level 1 (1-2 marks):
Simple statements are made. The response may fail to make logical links between the points raised.

0 marks:
No relevant content.

Indicative content

- doubling speed increase the kinetic energy
- kinetic energy increases by a factor of 4
- work done (by brakes) to stop the car increases
- work done increases by a factor of 4
- work done is force \times distance and braking force is constant
- so if work done increases by 4 then the braking distance must increase by 4

M6. (a) (produces) a force from water on the boat
in the forward direction
accept in the opposite direction
this must refer to the direction of the force not simply the boat moves forwards
an answer produces an (equal and) opposite force gains 1 mark
(b) (i) 1.5
allow 1 mark for correct substitution, ie $\frac{16-4}{8}$ or $\frac{12}{8}$ provided no subsequent step shown ignore sign
$\mathrm{m} / \mathrm{s}^{2}$
(ii) 102ortheir (b)(i) $\times 68$ correctly calculated
allow 1 mark for correct substitution, ie 1.5×68
or their (b)(i) $\times 68$
provided no subsequent step shown
(iii) greater than
reason only scores if greater than chosen
need to overcome resistance forces
accept named resistance force accept resistance forces act (on the water skier)
do not accept gravity

M7. (a) A constant speed / velocity
accept steady pace
do not accept terminal velocity
do not accept stationary

B acceleration
accept speeding up

C deceleration
accept slowing down
accept accelerating backwards
accept accelerating in reverse
do not accept decelerating backwards
(b) (i) the distance the car travels under the braking force accept braking distance
(ii) speed/velocity/momentum
(c) (i) $5000(\mathrm{~N})$ to the left both required accept 5000(N) with the direction indicated by an arrow drawn pointing to the left accept 5000(N) in the opposite direction to the force of the car (on the barrier) accept 5000(N) towards the car
(ii) to measure/detect forces exerted (on dummy / driver during the collision)
(iii) 4
allow 1 mark for showing a triangle drawn on the straight part of the graph
or correct use of two pairs of coordinates
$\mathrm{m} / \mathrm{s}^{2}$
do not accept mps ${ }^{2}$
1

